Appendix A9.1 Noise & Vibration Survey

Contents

Appen	dix A9.1: Noise and Vibration Survey	. 1
1.	Baseline Noise Monitoring	. 1
1.1	Introduction	. 1
1.2	Survey Methodology	
1.3	Survey Results	. 5
2.	Baseline Vibration Monitoring	11
2.1	Introduction	11
2.2	Survey Methodology	11
2.3	Survey Results – Harristown Bus Depot	
2.4	Survey Results – Malahide Road	16
3.	References	21
4.	Calibration Certificates for Monitoring Equipment	22
4.1	Rion NL-52 S/N 186668	23
4.2	Rion VM-56 (S/N 680043)	26

Appendix A9.1: Noise and Vibration Survey

1. Baseline Noise Monitoring

1.1 Introduction

This Report includes the relevant survey details and results associated with baseline noise monitoring undertaken as part of the Kimmage to City Centre Core Bus Corridor Scheme (hereafter referred to as the Proposed Scheme). The survey has been undertaken to inform the noise and vibration chapter of the Proposed Scheme EIAR.

Survey details and results for each of the noise monitoring locations are included within this Report.

1.2 Survey Methodology

1.2.1 Study Area

The assessment study area is split into three geographical zones, as described in Table 1.

Geographical Zone	Description of Study Area				
Lower Kimmage Road from Kimmage Cross Roads to the Junction with Harold's Cross Road	This section of the Proposed Scheme will commence on R817 Kimmage Road Lower at the junction with R818 Terenure Road West and Kimmage Road West and will be routed via R817 Kimmage Road Lower to R817 Harold's Cross Road.				
	A Bus Gate is proposed north of Ravensdale Park junction, and another is proposed north of Mount Argus Road junction, both along R817 Kimmage Road Lower. Local traffic will be permitted access from the south via Sundrive Road or Larkfield Avenue. Quiet Street Treatment will be proposed for the cycle route through the small park alongside the River Poddle just north of Kimmage Cross-Roads, which will continue generally parallel to R817 Kimmage Road Lower to Harold's Cross Park.				
Harold's Cross Road from Harold's Cross Park to the Grand Canal	This section of the Proposed Scheme will extend from Harold's Cross Park, along R137 Harold's Cross Road towards the Grand Canal at Parnell Road Junction.				
	The section of R137 Harold's Cross Road to the north of Harold's Cross Park will be used for buses, cyclists, taxis and local access only. To accommodate local access to R817 Kimmage Road Lower from the north, the junction of R137 Harold's Cross Road and Kenilworth Park will be modified. A bus gate at the junction of Kenilworth Square North and Kenilworth Park will restrict general traffic to R817 Kimmage Road Lower, with traffic diverted via Rathgar Avenue.				
	To accommodate the Proposed Scheme, land takes are proposed to the north and south of R137 Harold's Cross Road between Harold's Cross Park and the Parnell Road Junction.				
Clanbrassil Street Upper and Lower and New Street South from the Grand Canal to the Patrick Street Junction	The Proposed Scheme will then pass from the R137 on Clanbrassil Street Upper and Lower, onto New Street South. Along the Proposed Scheme it is proposed to widen Robert Emmett Bridge across the Grand Canal on the western side and along the retaining wall at Gordon's Fuel Merchants. Signal Controlled Priority for buses will be enabled between Leonard's Corner Junction at South Circular Road and Lombard Street West, where the street is not wide enough. Limited land take is proposed on R137 Clanbrassil Street Upper north of the Grand Canal, and at the junction of R137 Clanbrassil Street Lower and St. Vincent Street South.				

1.2.2 Survey Locations

Baseline noise surveys have been conducted at locations representative of the nearest noise sensitive areas which have the potential to be impacted by construction works and / or those likely to be impacted during the Operational Phase of the Proposed Scheme. Baseline noise measurements were made over short-term periods to inform the assessment.

Short-term surveys (attended day-time measurements) were carried out at a total of nine locations along the length of the Proposed Scheme.

Figure 9.2 in Volume 3 of this EIAR illustrates the baseline noise monitoring locations. Each is discussed in the relevant geographical zone in the following sections.

1.2.2.1 Lower Kimmage Road from Kimmage Cross Roads to the Junction with Harold's Cross Road

A total of five attended survey locations were surveyed within this study area. The location reference and a description of survey positions are included in Table 2.

Table 2: Noise Monitoring Locations – Lower Kimmage Road from Kimmage Cross Roads to the Junction with Harold's Cross Road

Location	Description of Survey Location							
Attended Monitoring Locations								
CBC0011ANML001	Green area in Poddle Park to northwest of R817 Fortfield Road / R818 Kimmage Road West junction, in line with Brookfield estate facades. Located approximately 40m to R817 and 10m to R818 road edges.							
CBC0011ANML002	On footpath on Poddle Park Road, at 100m distance to Poddle Park Road / Ravensdale Park junction.							
CBC0011ANML003	On footpath to south of R817 Kimmage Road Lower / Sundrive Road junction, in line with façades on R817. Located approximately 10m from R817 road edge.							
CBC0011ANML004	On footpath located to east of Mount Argus Road / Mount Argus Grove, in line with façades of Mount Argus Grove estate. Located approximately 13m from Mount Argus Road edge.							
CBC0011ANML005	On footpath to east of R817 Kimmage Road Lower. Located approximately 45m from R817 Kimmage Road Lower / Harold's Cross Road junction and 2m from R817 road edge.							

1.2.2.2 Harold's Cross Road from Harold's Cross Park to the Grand Canal

A total of two attended survey locations were surveyed within this study area. The location reference and a description of survey positions are included in Table 3.

Location	Description of Survey Location							
Attended Monitoring Locations								
CBC0011ANML006	On footpath to north of R817 Harold's Cross Road / St. Clare's Avenue junction, in line with closest residential facades facing onto R817. Located approximately 8m from R817 road edge.							
CBC0011ANML007	On footpath to south of R137 Harold's Cross Road / Mound Drummond Avenue junction, in line with residential facades facing onto R817. Located approximately 6m from R817 road edge.							

1.2.2.3 Clanbrassil Street Upper and Lower and New Street from the Grand Canal to the Patrick Street Junction

A total of two attended survey locations were surveyed within this study area. The location reference and a description of survey positions are included in Table 4.

Table 4: Noise Monitoring Locations – Clanbrassil Street Upper and Lower and New Street South from the Grand Canal to the Patrick Street Junction

Location	Description of Survey Location						
Attended Monitoring Locations							
CBC0011ANML008	On footpath to north of R137 Clanbrassil Street Upper / Clanbrassil Close junction, in line with residential properties lining R137. Located approximately 12m from R137 road edge.						
CBC0011ANML009	On footpath to north of R137 Clanbrassil Street Lower / St Vincent Street South junction, in line with residential properties facing onto R137. Located approximately 4m from R137 road edge.						

1.2.3 Survey Periods

Attended noise surveys were undertaken between 15 July 2020 and 17 July 2020. The specific survey dates and times for each location are included in the survey results tables in Section 1.3.

1.2.4 Survey Equipment and Personnel

The attended surveys were undertaken using a RION NL-52 sound level meter. The specific equipment details are summarised in Table 5.

Table 5: Noise Monitoring Equipment

Survey Type	Equipment	Serial Number	Calibration Date
Attended	Rion NL-52	186668	07/05/2020

The calibration certificate of the monitoring equipment is included within Section 2.

The surveys were conducted by Jack Brennan, acoustic technician, AWN Consulting.

1.2.5 Survey Parameters

The following noise parameters were measured and are discussed within this Report.

L_{Aeq,T} is the A-weighted equivalent continuous steady sound level during the sample period and effectively represents an average value of the defined measurement period, T.

L_{Aeq,16hr} refers to the ambient daytime period between 07:00 and 23:00hrs.

L_{A10,T} is the A-weighted sound level that is exceeded for 10% of the sample period; this parameter gives an indication of the upper limit of fluctuating noise such as that from road traffic. The T is the sample period the parameter is measured over.

L_{A10,18hr} is the L_{A10} parameter between 06:00 and 00:00hrs as defined within the Calculation of Road Traffic Noise (hereafter referred to as CRTN) (UK Department of Transport 1998).

L_{A90,T} is the A-weighted sound level that is exceeded for 90% of the sample period; generally used to quantify background noise. The T is the sample period the parameter is measured over.

LA90,16hr, refers to the background daytime noise level between 07:00 and 23:00hrs

LA90,8hr, refers to the background night-time noise level between 23:00 and 07:00hrs

The L_{den} parameter is also discussed within the report. For long-term survey locations, this parameter is derived from the L_{Aeq} data over each 24 hour period as is defined as follows:

L_{den} is the 24hour noise rating level determined by the averaging of the L_{day} with the L_{evening} (plus a 5dB penalty) and the L_{night} (plus a 10dB penalty). L_{den} is calculated using the following formula, as defined within the Environmental Noise Regulations (S.I.140 / 2006):

$$L_{den} = 10 \log \left(\frac{1}{24}\right) \left(12 * \left(10^{\frac{Lday}{10}}\right) + 4 * \left(10^{\frac{Levening+5}{10}}\right) + 8 * \left(10^{\frac{Lnight+10}{10}}\right)\right)$$

Where:

- L_{day} is the A-weighted long-term average sound level as defined in ISO 1996-2:2017 Part 2: Determination of sound pressure levels (hereafter referred to as ISO 1996-2) (ISO 2017), determined over all the day periods of a year. The 12hr daytime period is between 07:00 to 19:00hrs.
- Levening is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the evening periods of a year. The 4hr evening period is between 19:00 to 23:00hrs.
- L_{night} is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the night periods of a year. The 8hr night-time period is between 23:00 to 07:00hrs.

1.2.6 Survey Procedure

Noise measurements were conducted in general accordance with the guidance contained in ISO 1996-1:2016 Acoustics – Description measurement and assessment and environmental noise. Part 1: Basic quantities and assessment procedures (hereafter referred to as ISO 1996-1) (ISO 2016) and ISO 1996-2 (ISO 2017).

1.2.6.1 Attended Measurements

Attended noise surveys were undertaken at public locations at positions representative of the adjacent noise sensitive locations (e.g. on green areas in residential areas, footpaths, parks etc.). For all attended surveys, the microphone was positioned at height of approximately 1.2m above ground.

The attended surveys were undertaken in accordance with the shortened measurement procedure described in CRTN (UK Department of Transport 1998) and Transport Infrastructure Ireland's (TII) document Guidelines for the Treatment of Noise and Vibration on National Road (TII 2004).

This methodology involves a method whereby $L_{A10(18hour)}$ and L_{den} values are obtained through a combination of measurement and calculation as follows:

- Noise level measurements are undertaken at the chosen location over three consecutive hours between 10:00hrs and 17:00hrs;
- Each sample period was measured over a 15 minute duration;
- The LA10(18hour) for the location is derived by subtracting 1 dB from the arithmetic average of the three hourly sample values, i.e.:
 - $L_{A10(18hour)} = ((\sum L_{A10(15 minutes)}) \div 3) 1 dB.$
- The derived L_{den} value is calculated from the L_{A10(18hour)} value, i.e.: L_{den} = 0.86 x L_{A10(18hr)} + 9.86 dB.

1.3 Survey Results

1.3.1 Lower Kimmage Road from Kimmage Cross Roads to the Junction with Harold's Cross Road

1.3.1.1 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 6.

Jacobs ARUP SYSTIA

Attended Location	Date	Start Time			Derived L _{den}	Survey Notes	
			L _{Aeq}	L _{A10}	L _{A90}		
CBC0011ANML001	15/07/2020	10:00	64	67	57	67	Road traffic noise from R817 Fortfield Road / R818 Kimmage Road West junction dominant noise source, birdsong
		11:08	64	67	58		Road traffic noise from R817 Fortfield Road / R818 Kimmage Road West junction dominant noise source.
		12:17	65	68	59		
CBC0011ANML002	15/07/2020	10:22	62	67	47	67	Road traffic noise from Poddle Park Road dominant noise source, reversing beacon.
		11:27	61	66	47	1	Road traffic noise from Poddle Park Road dominant noise source, pedestrian conversation.
		12:48	65	69	48		Road traffic noise from Poddle Park Road dominant noise source, dogs barking.
CBC0011ANML003	15/07/2020	10:46	69	73	57	71	Road traffic nosie from R817 Kimmage Road Lower / Sundrive Road junction dominant noise source.
		11:48	68	72	58		Road traffic nosie from R817 Kimmage Road Lower / Sundrive Road junction dominant noise source, car horn.
		13:17	68	72	57		Road traffic nosie from R817 Kimmage Road Lower / Sundrive Road junction dominant noise source.
CBC0011ANML004	16/07/2020	11:13	50	52	40	52	Road traffic noise from Mount Argus Grove and Mount Argus Road dominant noise source, dogs barking.
		12:14	49	51	42		
		13:12	48	49	39		Road traffic noise from Mount Argus Grove and Mount Argus Road dominant noise source, dogs barking, pedestrian conversation.
CBC0011ANML005	16/07/2020	11:35	71	75	56	73	Road traffic noise from R817 Kimmage Road Lower dominant noise source.
		12:33	70	75	54	1	Road traffic noise from R817 Kimmage Road Lower dominant noise source, car alarm.
		13:31	71	75	57		Road traffic noise from R817 Kimmage Road Lower dominant noise source, pedestrian conversation.

Table 6: Attended Noise Survey Results for Lower Kimmage Road from Kimmage Cross Roads to the junction with Harold's Cross Road

1.3.2 Harold's Cross Road from Harold's Cross Park to the Grand Canal

1.3.2.1 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 7.

Jacobs ARUP SYSTIA

Attended Location Date		Start Time	Measured Noise Levels (dB re.2x10 ⁻⁵ Pa)			Derived L _{den}	Survey Notes
			L _{Aeq}	L _{A10}	L _{A90}		
CBC0011ANML006	16/07/2020	11:54	62	66	55	66	Road traffic noise from R817 Harold's Cross Road / St. Clare's Avenue junction dominant noise source, distant construction noise.
		12:52	63	66	55		Road traffic noise from R817 Harold's Cross Road / St. Clare's Avenue junction dominant noise source, reversing beacon.
		13:49	62	66	54		Road traffic noise from R817 Harold's Cross Road / St. Clare's Avenue junction dominant noise source, car horn.
CBC0011ANML007	16/07/2020	14:23	68	71	56	71	Road traffic noise from R137 Harold's Cross Road / Mound Drummond Avenue junction dominant noise source, drilling.
		15:07 69	73	59		Road traffic noise from R137 Harold's Cross Road / Mound Drummond Avenue junction dominant noise source, siren.	
		15:53	69	73	57	1	Road traffic noise from R137 Harold's Cross Road / Mound Drummond Avenue junction dominant noise source.

Table 7: Attended Noise Survey Results for Harold's Cross Road from Harold's Cross Park to the Grand Canal

1.3.3 Clanbrassil Street Upper and Lower and New Street South from the Grand Canal to the Patrick Street Junction

1.3.3.1 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 8.

Table 8: Attended Noise Survey Results for Clanbrassil Street Upper and Lower and New Street South from the Grand Canal to the Patrick Street Junction

Attended Location	ended Location Date Start Time Measured Noise Level (dB re.2x10 ⁻⁵ Pa)			Derived L _{den}	Survey Notes		
			L _{Aeq}	L _{A10}	L _{A90}		
CBC0011ANML008	16/07/2020	14:43	61	65	54	65	Road traffic noise from R137 Clanbrassil Street Upper / Clanbrassil Close dominant noise source, siren.
		15:29	62	65	52	-	Road traffic noise from R137 Clanbrassil Street Upper / Clanbrassil Close dominant noise source, pedestrian conversation.
		16:12	63	67	52		Road traffic noise from R137 Clanbrassil Street Upper / Clanbrassil Close dominant noise source, pedestrian conversation, intermittent car horn and car radio audible.
CBC0011ANML009 Note 1	17/07/2020	12:48	75	71	56	69	Road traffic noise from R137 Clanbrassil Street Lower / St Vincent Street South dominant noise source, birdsong, siren.
		13:42	65	69	58		Road traffic noise from R137 Clanbrassil Street Lower / St Vincent Street South dominant noise source.
		14:33	67	70	57	1	

Note 1: Noise monitoring undertaken at CBC0011ANML009 during the first 15-minute measurement period was elevated due erroneous interference at end of measurement. Average calculated based on second and third measurement periods.

2. Baseline Vibration Monitoring

2.1 Introduction

This Section includes the relevant survey details and results associated baseline vibration surveys conducted as part of the overall Bus Connects Dublin – Core Bus Corridor Infrastructure Works (hereafter referred to as the CBC Infrastructure Works). Baseline vibration data obtained from this study has been used to information all individual Core Bus Corridor Schemes.

2.2 Survey Methodology

2.2.1 Survey Locations

Attended vibration monitoring was undertaken at sample locations adjacent to existing bus lanes within Dublin City. The surveys were undertaken to obtain typical baseline vibration levels along roads with both mixed vehicular traffic lanes and individual bus lanes. This information has been used to inform the operational vibration impact assessment for the CBC Infrastructure Works.

Surveys were also undertaken along an access road to the Harristown Bus Depot, Horizon Logistics Park, Swords, Co. Dublin, to obtain a measurement of vibration relating to specific bus drive by in isolation at a controlled sampling location to characterise the specific vibration level associated with buses in the absence of other traffic. A description of the survey locations is set out in Table 9.

Vibration Monitoring Locations	Description of Survey Location
AVML001	Harristown – Entrance Road to Bus Depot, midway along inbound road, 5m from road edge
AVML002	Harristown - Roundabout at Bus Depot entrance, buses entering depot, 5m from road edge
AVML003	Harristown – Roundabout at Bus Depot entrance, buses exiting depot, 5m from road edge
AVML004	Harristown – Entrance Road to Bus Depot, midway along outbound road, 5m from road edge
AVML005	Harristown – Entrance Road to Bus Depot, midway along inbound road, 7m from road edge
AVML006	Malahide Road / St. Johns Court – 5m from edge of Inbound Bus Lane
AVML007	Malahide Road / St. Johns Court – 10m from edge of Inbound Bus Lane
AVML008	Malahide Road / Donnycarney Church – 2.5m from edge of Inbound Bus Lane
AVML009	Malahide Road– 2.5m from edge of outbound Bus Lane

Table 9: Vibration Monitoring Locations

The survey locations undertaken along the Harristown Bus Depot entrance are illustrated in Figure 1. The survey locations undertaken along the Malahide Road are illustrated in Figure 2.

Figure 1: Vibration Monitoring Locations Harristown Bus Depot (source Google Earth)

Figure 2: Vibration Monitoring Locations Malahide Road (source Google Earth)

2.2.2 Survey Periods

Vibration monitoring was undertaken on the following dates:

- AVML001 AVML005 : 30th July 2020; and
- AVML005 AMML009: 13th August 2020.

2.2.3 Survey Equipment and Personnel

The survey was undertaken using a RION VM-56 vibration meter (S/N 680043) with PV-83D tri-axial accelerometer. Calibration certificate of monitoring equipment are included within Section 4.

The surveys were conducted Alex Ryan and David O'Donoghue, acoustic technicians, AWN Consulting.

2.2.4 Survey Procedure

Vibration measurements were conducted in general accordance with the guidance contained in British Standard BS 7385. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings (1990).

Vibration was measured in the three orthogonal axes. The accelerometer was secured in place with a 5kg sandbag at all monitoring locations.

The equipment was set to log for 1 minute intervals on a continual basis with an instantaneous storage interval of 100ms. Vibration monitoring periods at AVML001 to AVML005 along the entrance road to Harristown Bus Depot were undertaken for a period of 15 minutes at each position. Vibration monitoring periods at AVML006 to AVML009 along the Malahide Road were undertaken for a period of 30 minutes at each position.

2.2.5 Survey Parameters

The following vibration parameters are discussed within this Report.

PPV Peak Particle Velocity (PPV) is a measure of the velocity of vibration displacement in terms of millimetres per second (mm/s). It is defined as follows within BS 7385: (1990) as:

"the maximum instantaneous velocity of a particle at a point during a given time interval"

VDV Vibration Dose Value (VDV) is an evaluation of human exposure to vibration in buildings. It defines a relationship that yields a consistent assessment of continuous, intermittent, occasional and impulsive vibration and correlates well with subjective response. It is defined as follows within British Standard BS 6472: (2008) Guide to evaluation of human exposure to vibration in buildings (2008): Part 1 - Vibration sources other than blasting, as:

"The VDV is the fourth root of the integral of the fourth power of acceleration after it has been frequency-weighted (as defined in BS6472: 2008). The frequency-weighted acceleration is measured in m/s2 and the time period over which the VDV is measured is in seconds. This yields VDVs in m/s1.75"

The frequency weightings used in the BS 6472 (2008) document is Wb weighting for vertical axis and Wd for the horizontal axes.

2.3 Survey Results – Harristown Bus Depot

The vibration survey results measured at each location are presented for each pass by event (bus drive by) in terms of the PPV parameter in mm/s and in terms of the VDV parameter in m/s^{1.75} for each axis.

2.3.1 Location AVML001

Table 10 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ¹	VDV, _b , m/s ^{1.75}			
	X	Y	Z	X	Y	Z		
14:57	0.05	0.05	0.06	0.0003	0.0003	0.0020		
15:01	0.03	0.04	0.04	0.0002	0.0003	0.0016		
15:02	0.03	0.03	0.03	0.0002	0.0002	0.0008		
15:03	0.02	0.04	0.04	0.0001	0.0002	0.0016		
15:04	0.03	0.02	0.06	0.0002	0.0002	0.0022		
15:05	0.04	0.05	0.08	0.0002	0.0002	0.0028		
15:06	0.03	0.04	0.03	0.0002	0.0002	0.0013		
15:07	0.03	0.04	0.05	0.0002	0.0002	0.0018		
Minimum event	0.02	0.02	0.03	0.0001	0.0002	0.0008		
Maximum event	0.05	0.05	0.08	0.0003	0.0003	0.0028		

Table 10: Vibration Monitoring Results at ANML001

2.3.2 Location AVML002

Table 11 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}			
	X	Y	Z	х	Y	Z	
15:22	0.03	0.03	0.08	0.0002	0.0002	0.0019	
15:26	0.02	0.03	0.03	0.0002	0.0002	0.0012	
15:29	0.02	0.07	0.09	0.0002	0.0003	0.0014	
15:30	0.02	0.02	0.07	0.0001	0.0002	0.0019	
15:31	0.03	0.04	0.06	0.0002	0.0002	0.0024	
15:32	0.02	0.03	0.07	0.0002	0.0002	0.0022	
15:33	0.03	0.03	0.06	0.0002	0.0002	0.0014	
15:34	0.02	0.02	0.04	0.0001	0.0002	0.0016	
Minimum event	0.03	0.07	0.09	0.0002	0.0003	0.0024	
Maximum event	0.02	0.02	0.03	0.0001	0.0002	0.0012	

2.3.3 Location AVML003

Table 12 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s	;		VDV, _{b,d} , m/	VDV, _{b,d} , m/s ^{1.75}			
	X	Y	Z	x	Y	Z		
15:40	0.06	0.06	0.09	0.0003	0.0003	0.0031		
15:43	0.07	0.05	0.07	0.0003	0.0003	0.0027		
15:44	0.04	0.05	0.06	0.0002	0.0003	0.0021		
15:45	0.07	0.05	0.07	0.0003	0.0003	0.0032		
15:49	0.03	0.03	0.03	0.0002	0.0002	0.0014		
15:50	0.06	0.06	0.05	0.0003	0.0004	0.0027		
Minimum event	0.07	0.06	0.09	0.0003	0.0004	0.0032		
Maximum event	0.03	0.03	0.03	0.0002	0.0002	0.0014		

2.3.4 Location AVML004

Table 13 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Table 13: Vibration Monitoring Results at ANML004

Event Time	PPV, mm/s			VDV, _b , m/s ¹	VDV, _b , m/s ^{1.75}			
	X	Y	Z	x	Y	Z		
16:04	0.08	0.12	0.1	0.0006	0.0008	0.0060		
16:06	0.09	0.1	0.13	0.0004	0.0006	0.0061		
16:08	0.1	0.13	0.11	0.0005	0.0008	0.0049		
16:09	0.07	0.1	0.12	0.0005	0.0006	0.0049		
16:10	0.11	0.12	0.15	0.0006	0.0007	0.0072		
16:11	0.08	0.09	0.1	0.0005	0.0006	0.0046		
16:12	0.07	0.08	0.11	0.0004	0.0006	0.0059		
16:13	0.07	0.09	0.11	0.0004	0.0005	0.0054		
Minimum event	0.11	0.13	0.15	0.0006	0.0008	0.0072		
Maximum event	0.07	0.08	0.1	0.0004	0.0005	0.0046		

2.3.5 Location AVML005

Table 14 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}			
	x	Y	Z	Х	Y	Z	
16:36	0.03	0.02	0.03	0.0002	0.0002	0.0013	
16:39	0.02	0.03	0.03	0.0002	0.0002	0.0017	
16:40	0.03	0.04	0.04	0.0002	0.0003	0.0015	
16:44	0.03	0.04	0.06	0.0002	0.0003	0.0021	
16:46	0.03	0.03	0.03	0.0002	0.0002	0.0012	
16:47	0.03	0.03	0.03	0.0002	0.0002	0.0013	
16:48	0.03	0.03	0.04	0.0002	0.0002	0.0012	
Minimum event	0.02	0.02	0.03	0.0002	0.0002	0.0012	
Maximum event	0.03	0.04	0.06	0.0002	0.0003	0.0021	

Table 14: Vibration Monitoring Results at ANML005

2.4 Survey Results – Malahide Road

2.4.1 Location AVML006

Table 15 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Table 15: Vibration Monitoring Results at ANML006

Event Time	PPV, mm/	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	X	Y	Z	X	Y	Z	
11:23	0.03	0.03	0.07	0.0002	0.0002	0.0020	
11:24	0.03	0.02	0.06	0.0002	0.0001	0.0018	
11:25	0.03	0.03	0.10	0.0002	0.0002	0.0030	Bus
11:26	0.02	0.02	0.06	0.0002	0.0002	0.0015	HGV
11:27	0.03	0.03	0.07	0.0002	0.0002	0.0030	
11:28	0.02	0.02	0.05	0.0001	0.0001	0.0019	
11:29	0.05	0.03	0.08	0.0002	0.0002	0.0033	Bus
11:30	0.04	0.16	0.17	0.0002	0.0008	0.0027	HGV
11:31	0.02	0.02	0.03	0.0001	0.0001	0.0017	
11:32	0.04	0.05	0.07	0.0002	0.0002	0.0029	HGV
11:33	0.03	0.03	0.05	0.0002	0.0002	0.0020	
11:34	0.02	0.02	0.04	0.0002	0.0001	0.0015	Bus
11:35	0.04	0.04	0.13	0.0002	0.0002	0.0050	HGV
11:36	0.02	0.02	0.04	0.0001	0.0002	0.0015	
11:37	0.02	0.02	0.05	0.0002	0.0002	0.0020	Bus
11:38	0.02	0.02	0.03	0.0001	0.0001	0.0014	
11:39	0.04	0.03	0.10	0.0002	0.0002	0.0037	
11:40	0.03	0.04	0.12	0.0002	0.0002	0.0026	
11:41	0.07	0.06	0.15	0.0003	0.0002	0.0056	
11:42	0.05	0.03	0.11	0.0002	0.0002	0.0040	
11:43	0.04	0.04	0.05	0.0002	0.0002	0.0023	HGV
11:44	0.03	0.08	0.08	0.0002	0.0004	0.0021	

Event Time	PPV, mm/s VDV, _b , m/s ^{1.75}						
	X	Y	Z	Х	Y	Z	
11:45	0.03	0.03	0.05	0.0002	0.0002	0.0025	HGV
11:46	0.04	0.04	0.06	0.0002	0.0002	0.0027	HGV
11:47	0.02	0.03	0.04	0.0001	0.0002	0.0012	
11:48	0.04	0.04	0.10	0.0003	0.0002	0.0036	
11:49	0.06	0.04	0.08	0.0003	0.0002	0.0028	
11:50	0.03	0.02	0.05	0.0002	0.0002	0.0020	
11:51	0.03	0.04	0.05	0.0002	0.0003	0.0021	
11:52	0.04	0.05	0.21	0.0003	0.0003	0.0053	
Maximum all traffic	0.07	0.16	0.17	0.0003	0.0008	0.0056	
Maximum bus	0.05	0.03	0.10	0.0002	0.0002	0.0033	

2.4.2 Location AVML007

Table 16 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Table 16: Vibration Monitoring Results at ANML007

Event Time	PPV, mm	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	x	Y	Z	X	Y	Z	
11:55	0.03	0.02	0.04	0.0002	0.0001	0.0011	HGV
11:56	0.03	0.04	0.03	0.0002	0.0002	0.0011	
11:57	0.02	0.06	0.06	0.0002	0.0003	0.0011	
11:58	0.03	0.03	0.02	0.0002	0.0002	0.0004	
11:59	0.02	0.03	0.03	0.0001	0.0002	0.0008	
12:00	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:01	0.02	0.03	0.02	0.0001	0.0002	0.0005	
12:02	0.03	0.02	0.03	0.0002	0.0002	0.0009	
12:03	0.03	0.03	0.02	0.0002	0.0002	0.0008	
12:04	0.02	0.03	0.02	0.0001	0.0001	0.0004	
12:05	0.02	0.02	0.03	0.0002	0.0002	0.0011	
12:06	0.03	0.03	0.02	0.0002	0.0002	0.0006	Bus
12:07	0.02	0.05	0.05	0.0001	0.0002	0.0008	Bus
12:08	0.02	0.02	0.02	0.0002	0.0001	0.0007	Bus
12:09	0.02	0.02	0.03	0.0001	0.0002	0.0008	
12:10	0.02	0.03	0.02	0.0002	0.0002	0.0005	Bus
12:11	0.02	0.02	0.02	0.0001	0.0002	0.0009	
12:12	0.02	0.02	0.02	0.0001	0.0002	0.0003	
12:13	0.02	0.02	0.02	0.0001	0.0001	0.0007	Bus
12:14	0.02	0.02	0.02	0.0001	0.0002	0.0009	
12:15	0.02	0.02	0.02	0.0001	0.0001	0.0008	
12:16	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:17	0.02	0.02	0.02	0.0001	0.0001	0.0005	Bus

Event Time	PPV, mm/s VDV, _b , m/s ^{1.75}						
	X	Y	Z	Х	Y	Z	
12:18	0.02	0.03	0.03	0.0002	0.0002	0.0008	
12:19	0.03	0.03	0.03	0.0002	0.0002	0.0010	
12:20	0.02	0.02	0.02	0.0002	0.0002	0.0009	Bus
12:21	0.02	0.02	0.04	0.0001	0.0001	0.0012	
12:22	0.02	0.03	0.03	0.0001	0.0002	0.0010	
Maximum all traffic	0.03	0.06	0.06	0.0002	0.0003	0.0012	
Maximum bus	0.03	0.05	0.05	0.0002	0.0002	0.0009	

Location AVML008**Table 17** presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or Heavy Goods Vehicle (HGV) drive by noted.

Table 17: Vibration Monitoring Results at ANML008

Event Time	PPV, mm	/s		VDV,,, m/	S ^{1.75}		Notes
	X	Y	Z	X	Y	Z	
12:31	0.02	0.02	0.06	0.0001	0.0001	0.0004	Bus
12:32	0.02	0.06	0.08	0.0001	0.0003	0.0009	
12:33	0.02	0.03	0.04	0.0001	0.0002	0.0012	Bus
12:34	0.02	0.02	0.02	0.0001	0.0001	0.0004	HGV
12:35	0.02	0.02	0.04	0.0002	0.0002	0.0010	
12:36	0.02	0.02	0.02	0.0002	0.0002	0.0006	
12:37	0.02	0.02	0.02	0.0001	0.0001	0.0003	
12:38	0.02	0.03	0.03	0.0001	0.0002	0.0005	
12:39	0.02	0.03	0.02	0.0001	0.0002	0.0005	
12:40	0.03	0.03	0.02	0.0002	0.0002	0.0006	
12:41	0.04	0.03	0.02	0.0003	0.0002	0.0005	
12:42	0.03	0.02	0.03	0.0002	0.0001	0.0013	Bus
12:43	0.06	0.07	0.18	0.0003	0.0003	0.0057	
12:44	0.01	0.02	0.02	0.0001	0.0001	0.0004	Bus
12:45	0.02	0.03	0.05	0.0001	0.0002	0.0015	
12:46	0.02	0.02	0.03	0.0001	0.0001	0.0010	
12:47	0.02	0.03	0.03	0.0001	0.0001	0.0007	HGV
12:48	0.02	0.03	0.03	0.0001	0.0002	0.0010	HGV
12:49	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:50	0.02	0.02	0.02	0.0001	0.0001	0.0004	
12:51	0.02	0.02	0.02	0.0001	0.0002	0.0004	
12:52	0.02	0.02	0.02	0.0001	0.0002	0.0005	Bus
12:53	0.02	0.02	0.03	0.0001	0.0002	0.0009	
12:54	0.02	0.03	0.04	0.0001	0.0002	0.0012	
12:55	0.02	0.02	0.02	0.0001	0.0002	0.0003	
12:56	0.04	0.05	0.23	0.0002	0.0003	0.0056	HGV
12:57	0.02	0.03	0.05	0.0001	0.0002	0.0017	Bus
12:58	0.02	0.02	0.04	0.0001	0.0001	0.0012	

Event Time	PPV, mm/s			VDV,,, m/s ^{1.75}		Notes	
	Х	Y	Z	Х	Y	Z	
12:59	0.02	0.03	0.02	0.0001	0.0002	0.0006	
Maximum all traffic	0.06	0.07	0.23	0.0003	0.0003	0.0057	
Maximum bus	0.03	0.03	0.06	0.0002	0.0002	0.0017	

2.4.3 Location AVML009

Table 18 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Table 18: Vibration Monitoring Results at ANML009

Event Time	PPV, mm/	/s		VDV, _b , m/	VDV, _b , m/s ^{1.75}		
	X	Y	Z	X	Y	Z	
13:05	0.03	0.02	0.05	0.0001	0.0001	0.0012	
13:06	0.02	0.04	0.03	0.0002	0.0001	0.0011	Bus
13:07	0.04	0.05	0.08	0.0002	0.0002	0.0028	HGV
13:08	0.04	0.05	0.06	0.0002	0.0002	0.0019	
13:09	0.04	0.03	0.03	0.0002	0.0002	0.0011	
13:10	0.03	0.04	0.04	0.0002	0.0001	0.0012	
13:11	0.03	0.04	0.04	0.0002	0.0001	0.0011	
13:12	0.02	0.03	0.04	0.0002	0.0001	0.0012	Bus
13:13	0.03	0.06	0.04	0.0002	0.0003	0.0013	
13:14	0.03	0.04	0.03	0.0002	0.0002	0.0012	Bus
13:15	0.04	0.04	0.04	0.0002	0.0003	0.0014	Bus
13:16	0.04	0.04	0.09	0.0002	0.0001	0.0028	HGV
13:17	0.06	0.06	0.05	0.0002	0.0002	0.0016	
13:18	0.03	0.04	0.05	0.0002	0.0002	0.0016	Bus
13:19	0.02	0.03	0.03	0.0001	0.0001	0.0008	
13:20	0.04	0.04	0.03	0.0002	0.0002	0.0011	Bus
13:21	0.03	0.03	0.03	0.0001	0.0001	0.0011	Bus
13:22	0.04	0.04	0.09	0.0002	0.0002	0.0030	
13:23	0.03	0.03	0.03	0.0001	0.0001	0.0013	
13:24	0.02	0.03	0.05	0.0001	0.0002	0.0012	HGV
13:25	0.03	0.03	0.05	0.0002	0.0002	0.0014	
13:26	0.03	0.05	0.05	0.0002	0.0003	0.0015	Bus
13:27	0.03	0.04	0.04	0.0002	0.0002	0.0012	
13:28	0.02	0.04	0.04	0.0001	0.0002	0.0008	Bus
13:29	0.04	0.05	0.04	0.0003	0.0003	0.0022	
13:30	0.03	0.03	0.08	0.0002	0.0002	0.0022	
13:31	0.04	0.04	0.03	0.0002	0.0002	0.0011	
13:32	0.02	0.02	0.04	0.0001	0.0001	0.0011	
13:33	0.02	0.03	0.04	0.0002	0.0002	0.0014	
13:05	0.03	0.02	0.05	0.0001	0.0001	0.0012	

Event Time	PPV, mm/s			VDV,,, m/s ^{1.7}	5		Notes
	Х	Y	Z	Х	Y	Z	
Maximum all traffic	0.06	0.06	0.09	0.0003	0.0003	0.0030	
Maximum bus	0.04	0.05	0.05	0.0002	0.0003	0.0016	

3. References

ISO 1996-1:2016 Acoustics - Description, measurement and assessment of environmental noise. Part 1: Basic quantities and assessment procedures (ISO 2016)

ISO 1996-2:2017 - Description, measurement and assessment of environmental noise - Part 2: Determination of sound pressure levels (ISO 2017)

Transport Infrastructure Ireland (TII) (previously National Roads Authority (NRA)) Guidelines for the Treatment of Noise and Vibration in National Road Schemes, Revision 1 (TII 2004)

The UK Department of Transport Calculation of Road Traffic Noise (UK Department of Transport 1998)

British Standard Institute (BSI) British Standard (BS) 7385: 1990: Evaluation and measurement for vibration in buildings. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings. (BSI 1990)

BS 6472-1: 2008 Guide to evaluation of human exposure to vibration in buildings. Part 1 Vibration sources other than blasting (BSI 2008)

Directives and Legislation

S.I. No. 140/2006 – European Communities (Environmental Noise) Regulations 2006

4. Calibration Certificates for Monitoring Equipment

4.1 Rion NL-52 S/N 186668

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	20 April 2018	UCRT18/1436	0653
This certificate is issue	d in accordance with th	e laboratory accreditation	requirements of the United Kingdom
Accreditation Service. It p	provides traceability of mea	asurement to the SI system	of units and/or to units of measurement
realised at the National F	Physical Laboratory or othe	er recognised national metr	ology institutes. This certificate may not

be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION		Certificate Number UCRT20/1405			
UKAS Accredited Calibration Laboratory No. 0653	Page	2	of	2	Pages

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated. SLM instruction manual title Sound Level Meter NL-42 / NL-52 SLM instruction manual ref / issue 11-03 SLM instruction manual source Manufacturer Internet download date if applicable N/A Case corrections available Yes Uncertainties of case corrections Yes Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes Source of wind screen corrections Yes Uncertainties of wind screen corrections Yes Manufacturer Yes Uncertainties of wind screen corrections Yes Source of wind screen data Manufacturer	
SLM instruction manual title Sound Level Meter NL-42 / NL-52 SLM instruction manual ref / issue 11-03 SLM instruction manual source Manufacturer Internet download date if applicable N/A Case corrections available Yes Uncertainties of case corrections Yes Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
SLM instruction manual source Manufacturer Internet download date if applicable N/A Case corrections available Yes Uncertainties of case corrections Yes Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes Vind screen corrections Yes	
Internet download date if applicable N/A Case corrections available Yes Uncertainties of case corrections Yes Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
Case corrections available Yes Uncertainties of case corrections Yes Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
Uncertainties of case corrections Yes Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
Source of case data Manufacturer Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
Wind screen corrections available Yes Uncertainties of wind screen corrections Yes	
Course of wind corsen data Manufacturer	
Source of wind screen data Manufacturer	
Mic pressure to free field corrections Yes	
Uncertainties of Mic to F.F. corrections Yes	
Source of Mic to F.F. corrections Manufacturer	
Total expanded uncertainties within the requirements of IEC 61672-1:2002 Yes	
Specified or equivalent Calibrator Specified	
Customer or Lab Calibrator Customers Calibrator	
Calibrator adaptor type if applicable UC 0210	
Calibrator cal. date 06 December 2019	
Calibrator cert. number UCRT19/2333	
Calibrator cal cert issued by 0653	
Calibrator SPL @ STP 93.95 dB Calibration reference sound pressure le	evel
Calibrator frequency 999.97 Hz Calibration check frequency	
Reference level range 25 - 130 dB	
<u> </u>	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start Temperature 23.24 23.17 ±	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start Environmental conditions during tests Start Image: Temperature 23.24 Humidity 35.0 37.5 ±	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start Temperature 23.24 23.17 ± 0.30 °C Humidity 35.0 37.5 ± 3.00 %RH Ambient Pressure 101.20 101.19 ± 0.03 kPa	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start End Temperature 23.24 23.17 ± 0.30 °C Humidity 35.0 37.5 ± 3.00 %RH Ambient Pressure 101.20 101.19 ± 0.03 kPa	
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start End Image: Temperature 23.24 23.17 ± 0.30 °C Humidity 35.0 37.5 ± 3.00 %RH Ambient Pressure 101.20 101.19 ± 0.03 kPa Response to associated Calibrator at the environmental conditions above. Initial indicated level 94.0 dB Adjusted indicated level 93.9 dB]
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. End Environmental conditions during tests Start End Image: Temperature 23.24 23.17 ± 0.30 °C Humidity 35.0 37.5 ± 3.00 %RH Ambient Pressure 101.20 101.19 ± 0.03 kPa Response to associated Calibrator at the environmental conditions above. Initial indicated level 93.9 dB The uncertainty of the associated calibrator supplied with the sound level meter ± 0.10 dB]
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. End Environmental conditions during tests Start End Image: Temperature 23.24 23.17 ± 0.30 °C Humidity 35.0 37.5 ± 3.00 %RH Ambient Pressure 101.20 101.19 ± 0.03 kPa Response to associated Calibrator at the environmental conditions above. Initial indicated level 93.9 dB The uncertainty of the associated calibrator supplied with the sound level meter ± 0.10 dB Self Generated Noise This test is currently not performed by this Lab. Self Self]
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start End Image: Temperature 23.24 23.17 ± 0.30 °C Humidity 35.0 37.5 ± 3.00 %RH Ambient Pressure 101.20 101.19 ± 0.03 kPa Response to associated Calibrator at the environmental conditions above. Initial indicated level 93.9 dB The uncertainty of the associated calibrator supplied with the sound level meter ± 0.10 dB Self Generated Noise This test is currently not performed by this Lab. Microphone installed (if requested by customer) = Less Than N/A dB A Weighting]
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start Image: Temperature 23.24 Present Pressure 101.20 Image: Temperature 101.20 Image]
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start Environmental conditions during tests Start Image: Temperature 23.24 Present temperature 20.03 Response to associated Calibrator at the environmental conditions above. Initial indicated level 93.9 Mathematic temperature 0.10 B Adjusted indicated level Self Generated Noise This test is currently not performed by this Lab. </td <td>]</td>]
Accessories used or corrected for during calibration - Extension Cable & Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp. Environmental conditions during tests Start Image: Temperature 23.24 Present Pressure 101.20 Image: Temperature 101.20 Image]

Uncertainty of the electrical self generated noise ±

..... END

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

0.12

dB

.....

For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.

The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

 Calibrated by:
 B. Bogdan

 Additional Comments
 The results on this certificate only relate to the items calibrated as identified above.

 Prior to calibration the instrument's main PCB was replaced and the meter was re-aligned.

Kimmage to City Centre Core Bus Corridor Scheme

R 2

4.2 Rion VM-56 (S/N 680043)

CERTIFICATE OF CALIBRATION

Date of Issue: 01 November 2019 Issued by: ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL Telephone 01908 642846 Fax 01908 642814 E-Mail: info@noise-and-vibration.co.uk Web: www.noise-and-vibration.co.uk Acoustics Noise and Vibration Ltd trading as ANV Measurement Systems		Page Page pproved Signatory		825 Pages
Client	AWN Consulting Limited The Tecpro Building, IDA Business Dublin 17 Ireland	& Technology Park,	Clonshaugh	
Purchase Order No.	DOD/19/Cal03			
Instrument	Rion VM-56 Tri-Axial Vibration Meter	er		
Serial No.	00680043			
Accelerometer Type	VM-56			
Accelerometer Serial No.	. 80047			
Program	2.0			
Client Asset No.	N/A			
Procedure ID.	VM-56 Issue 1			
Job Number	TRAC19/11477			
Date of Calibration	01 Nov 2019			
Previous Cert. number	N/A			
Date of Previous Cert.	N/A			
Rig Number	6			
Kit Number	24			
Calibration Status	Passed Calibration			

This calibration is traceable to National Standards. ANV Measurement Systems sources used to perform calibrations are calibrated at the National Physical Laboratory or by UKAS laboratories accredited for the purpose.

The performance of the system (the meter, accelerometer) was found to be within the manufacturer's specification.

<u>Comment</u> This certificate reports recorded values for the instrument 'As Received'.

Certificate Number TCRT19/1825 Page 2 of 3 Pages

Environment

The ambient environmental conditions at the time of the calibration were;

Temperature: $22.9 \pm 1^{\circ}$ C, Humidity: $40 \pm 5\%$ RH, Atmospheric pressure 98.2 ± 1 kPa <u>Test results</u>

Each accelerometer axis was mounted co-axially with a Rion LS-10C servo accelerometer, and tests conducted for the dynamic range, PPV linearity and frequency response of the complete system. Additional electrical tests were carried out on the amplitude linearity of the instrument.

PPV linearity response for the complete system at 16 Hz Weightings for all channels turned OFF

With PV-83CW serial No. 80047

Target Vel.	Actual Vel.	Indicated (X)	Error (X)	Indicated (Y)	Error (Y)	Indicated (Z)	Error (Z)
mm/s	mm/s	mm/s	%	mm/s	%	mm/s	%
0.50	0.51	0.57	11.56	0.55	7.65	0.54	5.69
1.00	1.02	1.09	6.67	1.08	5.69	1.06	3.73
2.50	2.55	2.67	4.51	2.66	4.12	2.60	1.77
5.00	5.11	5.31	3.93	5.30	3.73	5.18	1.38
10.00	10.13	10.59	4.50	10.43	2.92	10.35	2.13
20.00	20.27	21.24	4.80	21.03	3.76	20.61	1.69

Permitted tolerance ± 10% ± 1 LSD (Least Significant Digit).

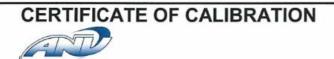
Linearity errors in dB measured electrically at 40 Hz

Weightings for all channels turned OFF

Level changes in dB; reading error in dB given for each axis. "m/s²" is actual reading in m/s².

1 m/s² Range

Level dB	Error (X) dB	m/s² (X)	Error (Y) dB	m/s² (Y)	Error (Z) dB	m/s² (Z)
0	REF	0.98154	REF	0.98129	REF	0.98130
-20	-0.01	0.09805	-0.01	0.09802	-0.01	0.09803
-40	-0.02	0.00979	-0.02	0.00979	-0.02	0.00979
-60	-0.10	0.00097	-0.10	0.00097	-0.10	0.00097
-66	-0.03	0.00049	-0.21	0.00048	-0.03	0.00049
-72	-0.23	0.00024	-0.23	0.00024	-0.23	0.00024


Permitted tolerance ±1.0 dB.

10 m/s² Range

Level dB	Error (X) dB	m/s² (X)	Error (Y) dB	m/s² (Y)	Error (Z) dB	m/s² (Z)
20	-0.03	9.79122	-0.03	9.75526	-0.03	9.73534
0	REF	0.98208	REF	0.97857	REF	0.97679
-20	-0.01	0.09808	-0.01	0.09775	-0.01	0.09758
-30	-0.01	0.03102	-0.03	0.03085	-0.06	0.03067
-40	0.04	0.00987	-0.02	0.00976	0.02	0.00979
-52	-0.31	0.00238	0.69	0.00266	-0.01	0.00245

Permitted tolerance ±1.0 dB.

Certificate Number

TCRT19/1825

Page 3 of 3 Pages

Frequency Responses For Complete System

MEASUREMENT STATES

Measured on the 1 m/s² range with weightings as indicated in the table and PV-83CW serial No. 80047

Frequency Hz	Applied Acc. m/s ²	X (Wd) rms m/s ²	Error X %	VDV (X) m/s ^{1.75}	Error X %
3.981	0.285	0.15654	5.4	0.30765	5.3
5.012	0.355	0.15445	5.2	0.30359	5.1
6.310	0.355	0.12187	5.1	0.23974	5.0
7.943	0.355	0.09586	4.5	0.18849	4.4
10.00	0.355	0.07622	4.9	0.14987	4.8
12.59	0.355	0.06052	5.3	0.11912	5.3
15.85	0.355	0.04836	6.2	0.09515	6.2
19.95	0.550	0.06014	7.3	0.11834	7.3

Frequency Hz	Applied Acc. m/s ²	Y (Wd) rms m/s ²	Error Y %	VDV (Y) m/s ^{1.75}	Error Y %
3.981	0.285	0.15640	5.3	0.30743	5.2
5.012	0.355	0.15372	4.7	0.30199	4.5
6.310	0.355	0.12149	4.7	0.23878	4.6
7.943	0.355	0.09627	5.0	0.18928	4.9
10.00	0.355	0.07622	4.9	0.14987	4.8
12.59	0.355	0.06054	5.3	0.11907	5.3
15.85	0.355	0.04850	6.5	0.09539	6.5
19.95	0.550	0.06064	8.2	0.11932	8.2

Frequency Hz	Applied Acc. m/s ²	Z (Wb) rms m/s ²	Error Z %	VDV (Z) m/s ^{1.75}	Error Z %
3.981	0.285	0.26307	3.0	0.52192	3.8
5.012	0.355	0.37779	2.4	0.74853	3.1
6.310	0.355	0.38731	2.1	0.76723	2.7
7.943	0.355	0.37632	2.0	0.74338	2.4
10.00	0.355	0.35641	1.6	0.70262	1.7
12.59	0.355	0.32928	1.2	0.64883	1.3
15.85	0.355	0.29668	1.3	0.58400	1.3
19.95	0.550	0.39872	0.8	0.78497	0.8
25.12	0.550	0.33640	3.3	0.66184	3.3
31.62	0.550	0.27597	2.9	0.54310	2.9
39.81	0.550	0.21843	1.0	0.42982	1.0
50.12	0.550	0.17703	3.4	0.34836	3.3
63.10	0.550	0.13695	3.8	0.26950	3.8
79.43	0.550	0.10077	4.1	0.19832	4.1

Tolerance required @ 4 Hz to 63 Hz +12%/-11% ; @ 80 Hz +26%/-21%

All results meet the manufacturer's specification.

END OF CALIBRATION

CALIBRATED BY :- A. Lloyd